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Abstract

This paper discusses some of the theoretical considerations which
arise when the guidance/navigation problem for space missions is treated
as an application of optimal control and estimation theory. Expressions
for the first and second variations of the trajectory end conditions are
developed as functionals of the control variations, and necessary and
sufficient conditions for optimality are described. The analogy to
similar results in the ordinary calculus is emphasized. A geometrical
interpretation of optimal control is presented, and the notions of
controllability, abnormality, conjugate points, aqg,gxtremal fields are
discussed. The meaning of optimal control in the i;@‘i;re‘asence of random
disturbances is discussed by introducing & simple problem from the
ordinary calculus. A technique for sequentially estimating the time varying
state vector (position and velocity) in the presence of noise on the
navigation data is described. The resulting difference equations for the
estimate and covariance matrix are extended to differential equations
for the case of continuous data by postulating a "sequentially correlated"

stochastic process.




1. Navigation and Guidance for Space Missions

Navigation is the task of determining the state vector defining the
spacecraft trajectory, where the state vector might be composed
of the position and velocity components at some initial (epoch) time to ’
plus certain constant parameters which define the accelerations on the
spacecraft subseguent to time to. Guidance is the task of calculating
and executing corrective maneuvers which will cause the mission objectives
to be achieved, using the navigation information to predict the motion of
the spacecraft. (reference 1) The spacecraft trajectory can
usuvally be approximated reasonably well by a series of "guidance phases,"
where the spacecraft is assumed to move under the influence of only one
dominant gravitating body. 1In each such phase of flight various types
and quality of navigation data are gathered, and various kinds of
guidance corrections are accomplished.' In figures 1, 2, and 3 the -’?."3&,
earth escape, heliocentric transfer, approach, and terminal phases of the
trajectory are illustrated for a typical interplanetary mission.

The data used to solve the navigation problem might consist of a
series of celestial observations taken from the spacet;ra.ft, such as angles
measured between certain stars and planets,, a.nd/ or it might consist of
earth-based radio tracking data, such as the radial speed of the space-
craft as measured by the doppler shift, an¢/ or it might consist of the

output of inertial measuring devices mounted on the spacecraft. The state
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vector can only be estimated, since the observed data would be contaminated

with spurious noise, a.nd/ or may not contain sufficient information. The
estimation procedure is usually designed to minimize the expected value
of the squared error in the estimated, which is called minimum variance
estimation. (reference 2)

The guidance corrections during a free fall phase of the trajectory
would consist of one or more velocity impulses, imparted by a rocket
engine which accelerates the spacecraft for a short period of time.

The guidance corrections during a powered i‘light. phase of the mission
(while the vehicle is experiencing thrust acceleration) would cbnsist
of varying the direction of pointing the thrust vector, a.nd/or of
varying the thrust level, and/or of varying the time ;>f terminating

thrust. There are many ways to make corrections which will satisfy the

mission objectives, but guidance is usually applied in such a way as to

minimize (or maximize) some performance index. Typical would be
minimizing the time required tov accomplish t he mission, or minimizing the
required control effort. This approach to the guidance task gives rise
to an optimal final value control problem pr, equivalently, & problem

in the calculus of variations. (references 3 and 4)

It is the purpose of this paper to discuss some of the theoretical
considerations which arise when treating the navigation and guidance
problem from the point of view of estimation and control theory. The
ideas to be discussed will be illustrated by constructing simple

examples which yield closed form solutions.



The notation employed is a&s follows: The independent variable is t,
which may be thought of as time; T is the (fixed) finé.l time; other
capital letters are either matriceé or kernéls of ‘ integral equations;
I is the identity matrix; column vectors are denoted by & bar (-) over
& small letter; the transpose of a vector or matrix is indicated by the
superscript '; b refers to the variation of the indicated quantity

Standard
from its Smeww valuey and Ef...] indicates the statistical expectation

of the bracketed quantity. Partial derivatives will be written in’ compact

matrix form, for example,

{aai]' B, B, aﬁi]
5231 th aaﬁi
and 5%5—": is a mtrg with Jk ™" element equal to Es%—{ .

The (t) will occasionally be omitted in equations.

(ot Lo 12 ad & Hoa)
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é. Formulation of the Problem

The motion of a space probe is in general described by the vector

differential equation#

S E=Hz v, t) (2)

where x 1s the 'Sﬁix dimensional state vector composed of the

position (¥) and velocity (V) coordinates, u is some control variable,
such as the steering angle or throttle setting of the rocket thrust
vector, and t is the independent variable usually taken to be time.

(we shall consider here only the case of a single unbounded control variable)
Thus equation (1) formulates the three components of the thrust and
gravitational acceleration (%T v) and the three components of the
velocity (%1';' r), and,for any given initial condition (i"(tl), V(tl)))

the trajectory of the space probe can be determined if u(t) is specified.
:\'F-—For most applications equation (1) cannot be integrated in closed

: integration

form )a.nd numerical/techniques are called for, '« 5 To illustrate the ideas
discussed ﬁere a simplified special example will be considered.

We imagine the probe moving with constant speed on a unit sphere, and

take the independent variable (t) to be longitude, which we assume to be

always monotonically increasing. If X is arc length, X

2 is latitude,

:r’l'he situation where the forcing accelerations contain random
elements will be discussed in Part 6.
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and the control variable is the slopeu = EEE)’ we have (see figure L)
o
anl |t cosa |
A s 4T ‘ = %()_(,,U) (2)
___,“,_ =
AT V2
ar

vepresenls Time,
T Note that the arc length xl plays=theolenliine, since the time .
Lraverse The longclude diffevente. $17/t,)&f unt speed (s simply 4;/711"/)’/(%)
required toApasa:ikzmmﬁu:u@ﬁ3xnﬂSﬁS?max:spesdxn::ai:isqntxakzzgzgq This
example can be interpreted as a crude model of motion around the sun
from the earth to some other planet, where thrust acceleration is being
continuously applied and the control variable u is related to steering
angle of the thrust vector. The radius of the unit sphere would be the

average radius of the earth and target planet.

(/VMWT% 4//;4,%0_)

3. The First and Second Variations

Perturbation theory is normally employed to formulate guidance
and orbit determination equations, since it is usually not possible to
find an explicit solution to the equations'of motion (l). In this approach
we postulate the existence of a known "standard", or reference, solution
is(t) to equation (1), and consider the variations sx(t) = i(?) - is(f) |
develoring @ Taylor  Series expansion o

and §i(t) = u(t) - ﬁs(t). ThisYis aﬁilogous toAthe ordinary calculus,
‘ dpprode '




+ ' “10 -

. (n deseribing 5
where we are Iinterested #o/}the behavior of some function B (@) in a

suall neighborhood of some given point u oo Gcooribedwy T hus

SE= b m -(Ef sz
Le']5 3 ATS,H MM =

where
) the partial derivatives are evaluated at u = G.. If lsul is

sufficiently small, we may drop the higher order terms and consider the

remaining second degree expression in the u; . The term @%7 61-1\

s

is called the first variation of the function B (u) with respect to

%6,
u, and 5u [a.u.& 6u) is called the second variation.

4.'“3

The situation is more complex when dealing with the functional

@‘(; { I;Mﬁ})where x is an n-dimensiohal state vector specified by the
dlfferentlal equation (1) yand t,, t, are (fixed) initial and final times.
Thus B, is implicitly a ‘functional of the function u(t), instead of
a functlon of the vector u. If B i is given as a linear combination of the
Xy at tz, that is

Bé( ja‘,)/u(ﬂ}) i “é{%'fl;«f“(’“} )

*
where a' = (al, az,...an) is a constant vector, we have

S, =& SX ;')’E?V’m} (5)

"F"‘he subscript 1 is introduced because later we shall deal with
more than one function ai(x)




We assume there is a standard trajectory described by is(t), us(t),
and employ equation (1) to obtain a Taylor series expansion-for Gi,

dnzthestorm | Aus

ﬁ?@m‘ﬁﬁ =Fex + GSu+zHSu
oy
+e ! léx%— MSX S+
w3 | ()

where the elements of the matrices F, G, H, Jk, and M are given by:
P = ) 4

34 A
G T 374—) (e 4G 1)

APRE TR

VIV
= | 91 . i
M. (5;;7{;‘3M> (4

and the partial derivatives are evaluated as functions of time

along the standard trajectory. We define the n by n state transition
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| matrix U(t, T) by
: QU@Z>~ A
> £ Fé) v | o
U2 >
;?)):-u(z}z)m) o 2122

U, &) = ke bty
Uﬁ)“) = 0 - /&ﬂ/ﬂj<2.

It follows that

- / - ’¢2
Sei(Rfh st ) SA L) 4 Z/ W, 2) Saur)dt

#
* /2 So) Su'2) AT (1)
iy, z

fff( (£, 2) Su(z) Sml2) b Ao

+ //rngﬁt’/\ ,--O/L&CM /7[2/\/”\..4,

where the "differential correction vector is given by

14

Xj(t) = &' Uty t) (8)

the "impulse response function" is given by

M () = () o(t) (9)
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the "weighting function" is given by
g(t) = A'(s) K(x) (10)

and the (symmetric) kermel is given by

K,L ¢, Z) = ;,elé‘t) M) U, 3) 6(2)
)L-lm /
+IZ Aels) G VG T 4) Ve, 3) 012) Ao

z (11)

 The sum of the first two terms on the right hand side of equation (7)

is the first variation of B 12 and the sum of the second two terms,
with the factor 4 deleted, is the second variation.

" This technique can be applied to our example problem if we postulate
the standard trajectory to be the great circle arc xZS(t) = 0, which
results from the controlMs(t) = 0. The above described calculations are
carried out in the appendix, where By = X, {tl, o _u(t)} and

By =%, {ty, tp u(t)} + It is shown that

Y

SRo = SH (%) 7“{] 2(}‘)”

(12)

/L;?Zm e Lins
Salt) A2 + Acghon ordan Tora

(13)

SM () +

an
»
]

A 4

f 2) S lt) S ()t e
,Z

[
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where | (;ﬁ-—j}) %,1 I-? 2
(22 for 2 >2

4. Optimal Final Value Control

The control function u‘(t) is usually chosen to minimize (or maximize)
some given performance index, such as the time required to accomplish the
mission or the total control effort (cost). This becomes a problem in
the classical calculus of variations (reference 4) or, equivalently, optimal control
theory, and the well known Pontryagin Principle (reference 3 ) can be

— ' %) R ’

applied. Thus if Bo@( {,‘E,)Il‘).ﬂﬁ)s)is to be minimized, subject to
B i(/Yf/t,.) 7151),4.(3)}} O for i =1, ...r, we define the "generalized hamiltonian"
to be ‘

n(%, u, t) = 3'(8) 2 w t) (%)

where (see equation @)

~ | |
X(t) = 2 vy K (2) (15)

.

=
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and the vy are the (constant) lagrange multipliers. The optimal control

must be chosen so that for all x and t we have

LA 2/
22\ = 0 Ah) =0
(‘VA) (a,w)

We shall present another approach here, which follows from an analysis
of the first and second variations. Just as in the ordinary calculus, -

it will be seen that necessary and sufficient conditions for optimality

?re *
exx=»a obtained.

Let us consider first & simple problem in the ordinary calculus
3n M dimensiond(
where we are to chose/g ugsuch that

=8 (W) = min
ol® 6)
B, =B,@) =0 fori=1, ...r. <
Po establish the first necessary condition we define the function
A .
/3o (“) = Z Ve B (&) = 7IRA)
A0

where v, are the Lagrange multipliers (whic1’1 must be found by a search

i
procedure), emt Chosen so LAt al the optimal s we

(77-0)/ /38 ) [%fi/)éﬁ — | 18)
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To establish a second necessary, conditic~. we consiruct the orthonoymal

(rotation) matrix L such that

JLIBEIT [ ) = Tocsgmae [P0 T

Thus

~

l)
'\—f'l
iy
° %
1
%
>§>|
N
3
o
~l -

/
r af)ba 2B
ey 2
K ¥ _ | 287 ' | @ )

and  we have dssumed |
esammpme| that K* is non-singula.r Th e £ pst row : Py
RS PYOPO)’“-((O?\ a[ z‘o. "‘J) and p_ = 0 because of equation (18).

(M%’“b) - = If we assume that a.ll‘pi’ 74 O,for i =1,...r, the

S

second necessary condition becomes

. j\f — \ — /
* X
- f*- 2 (2)A)E) =0
= — . . —
R K P e “ g (22)
. AT/ .

That is, R must be positive semi-definite. With the assumption that K* is
non-singular, m equation (22) also yields a sufficient

condition. (/;f K* is singular an equation analogous to (22) can be

Y ~ Apendix B il (S Shown That
obtained AThese conclusmns clisensihesamnbe-pe cquivalent to those

Tfn',S h(gj‘? 2
¢ d‘sc“““’ Lurthen

presented in sectlon T6 of reference 4.,

(n & Papey To be Ppubdlished.
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The necessary and sufficient conditions for the continuous case are

(vefevence 5)

analogous. f Given the r+l functionals B i(i g ty by u(t)} ), where B, is to

v

5y it can be

Lo

be minimized)sub,ject to ﬁi = Q, for i=l,...r, and 51{ are linear functions of the xj(,tJ)

First

shown that the aul:r,iat necessary condition is
%) = 2 vy *¥(t) =0 (23)
A=0 .

Equation (23) 1s equivalent to the Euler-lagrange equation in the classical

calculus of variations. A second necessary condition is

)= 2 v L) =o (24)

A0

which is the classical Legendre condition. It can be seen from equations

2 24

> A

{(14) and (15) that M* = (——-)and g ¥ = (5-;5). Let us suppose that

24

the inequality sign holds strictly in equation (3$) and, without further

loss of generality, that §o*(t) = 1. This is accomplished by normalizing the

*
impulse response functions by the factor [§ (t)]'%, which can always be done

if §o*(t) > 0. Let fwi} -1 o Pe the eigenvalues of the real symmetric
- ’ LR N ]

kernel

R = Z v L] Ry

and let {cp i(t)} i=1 « D€ the corresponding eigenfunctions, which we
- J L ]

assume to be & complete in the sense of reference t{ ?. Again we construct

an orthonormal transformation of the B 5 to yield the analogue of equation

19),

\:':}; that is,

¥

The {cpi(t)}j _1...o WY not be complete,as is shown on page 242 of

reference §. This situation corresponds to the matrix K¥ of equation ("2./ )

PRI
R

£} being singular. We deal with this case by arbitrarily gdjoining
additional orthonormal functions to complete the set. All of these new
functions are orthogonal to the kernel K*(t, ), and hence have
eigenvalues equal to zero. _



-

/‘“-'oo fols . R
/ | o (P Ag
} dzﬁ: /@x[/ﬁ/ | Z ./'CL,‘J/A QDA( ) /% = o A%?' #'/Iﬂ@

where

' o0 |,
?’ ~ / + Wa ? ’ (21)

a gdi.j 5 121, .ee® are the Fourier coefficients of the impulse response

function nj*(t), that is

77 )

iR

[6%-)
Z A P lz) (28)
AT/

«©

Let us heuristically define the delta function kernel to be A(t, T) =

L, #1(e)oy(0),
which?has the same eigenfunctions as K¥(t,T) but all eigenvalues equal to =
| unityS The analogue of eguation (m) then becomes

Rbr) = al) + K403 - Z[7) AN = o

(29)

Thus R (t,r) can have no eigenvalues less than zero, which is equivalent

tc saying that the kernel composed of the lgst two terms of equation

(29) can have no eigenvalues less than -l. If the eigenfunctions of K*(t, T)
do indeed form a complete set, (which implies that the inequality sigﬁ

holds strictly in equation (29)), we have a sufficient condition.

*A rigorous construction of this delta funct_‘.ion will not be presented

here.

S et
e <+ e e e
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To apply these results to our examplé problem we suppose that arc
length (time of flight) is to be minimized at the fixed final longitude

t x, and the standard trajectory

2’ 17 P2 =%
is given by XZS(t) = 0. In the appendix it is shown that y = O,

subject to x2(1:.2 )= 0. Thus B_ =x

go*(t) =1, T*(t) = 1, and the eigenvalues and eigenfunctions of K*(t, 7)

are computed. It is shown that ;h t;_'?,jectory yields & minimum value
z ]_— ! < J
of arc length if and only if ;7“"3"13]1 which is a well known result. If

‘:/;1 "7)"/"‘5 > % the trajectory is neither weximizing nor minimizing.
" j




o v oo en L AT

5. A Geometrical Interpretation of Optimality

Let us seek a geometrical interprgtation of the optimality conditions
bty defining an (r+l) dimensional Euclidean space with Cartesian coordinates
given by 68 {}i,tzs u(t)} = [650, GBl, . 6ﬁr]. Thus any point in
the space is a mapping of the function $u(t) to the vector 68, and the
origin 68 = O corresponds to the optimal standard trajectory. Obviousiy
@il points in this space cannot be reached by varying the control, for then
it would be possible to achieve 560 < 0 and éﬁi =0fori=12, ... 1,
which contradicts the assumption that the standard trajectory was
minimizing. Indeed, it can be shown (reference 7) that the envelope of

reachable points is given, to second order, by the parabaloid(ﬁ?fe f[jLLYP 5‘)

wt- 2 () e = o
AT

The orthonormal transformation L referred to in part 4 has.the effect of
rotating the coordinate axes of the space to coincide with the principal
axes of the reachable envelope, and the 5 are the radii of curvature

(7)30d(29) and the detinition of the L motrix
at the origin. From equations é:zj;.*;:;g;a;:.4f“241t follows that

(Zo S DCUMJ ovdfr)

f’R ) sub) Sufrldrde = gﬁ —Z( )@/3 =04,
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Thus the positive semi-definiteness of R(t, T) implies that the reachable
points always lie above the reachaﬂle envelope, which motivates the necessary
and sufficient conditions described above. Various férms of reachable
envelopes are showa in figure 5:

We‘have thug far assumed that no*(t) = 0 but that none of the other
impulse response functions are identically zero. If ﬂi*(t) = 0 for
i =1,...q the trajectory is said to be abnormal, of order g (reference
z?, page 210?, a troublesome case where the analysis discussed above does

not directly apply. Abnormality is related to the concept of first order

controllability, where a trajectory can be said to be first order uancontrollable of

order
p if there are p influence functions equal to zero. (references 7 and 8),

The motivation for this definition follows from the observation that
a control variation §u(t) has no first order effect on 661* if ni*(t) = 0.
Thus any optimal trajectory is first order uncontrollable of at least
order one, and is first order uncontrollable of order g+l if it is abnormal of
order q.

The controllability definition can be extended by saying that
& point 65* is second order controllable if -65* lies within the

»
reachable envelope. If this condition applies it is possible to find

. — -— A - —_)
a control 6u(t) which results in A{B*é R *Z(/t// 2N 5*“'{;)} = - 3R

F The definition of abnormality presented here*is slightly
different <¥=m that presented in reference L, where Bo = Bl is
rom

also considered to be abnormal. This case corresponds to rotating
the axes of the boundary function space (by the transformation L)
through an angle of precisely =/2.
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% ¥
and hence A8 + § = 0. For example, the control variation

/e

S/jz[/z/ = & t Z 6,C M/{ ﬁ) (32)

A=

can realize any desired point within the reachable envelope if

Vetr) = Z 2 %II/‘, A=A

The Yi(t) have the property that

b
éw, 1) W 4) A

that is, they form a set of r annihilator functions of the kernel R(t, T).

O

Thus equation (31) becomes

[ ]

ss- Z L)) €25 ] o

AT / ) /l -
where

z-‘_ =
X X
3p: = & /771/”)4@]*2 s pa (34)
T, .

AT

_%
If the desired 8B lies within the reachable envelope we know from

equation (31) that the right hand side of equation (33) is positive.




Since we have assumed p, # 0, it is thus always possible to find f € 13 120 o op
- , oo

from equations (33) and (34%) which will achieve any desired issi*}i=0,l,...r

within the reachable envelope. This analysis has important application to

the guidance problem, where it is necessary to consider the end conditions

which can be attained for any given initial condition disturbance, and ‘to

construct a control variation which will attain the desired result('Y€F9r€7\c€ ‘?)
We have thus far assumed thatlgone of the radii of curvature of the

reachable envelope are Zzero (pi % 0 foralli=1, ... r), which,

in the terminology of classicél calculus of variations, is equivalent

to saying that the initial point ¢ end the final point tz are not

1
“conjugate" to one another (reference 4). If one or more py = O the
reachable envelope cannot be constructed, which implies that it is not
possible to generate a family of minimizing trajectories in a small
reighborhood of the standard trajectory which achieve slightly different

end conditions. This notion is directly related to the classical concept

of a "field" of extremals (reference k). Let us imagine a family of standard
trajectories, all extremals in the sense that no*(t) = 0 along any trajectory
(that is, the Euler-lagrange equations are satisfied along every pafh).

The initial state vectors %s of this family lie on a given n-dimensional

manifold, the final state vectors §251ie on some other given n-dimensional

manifold, and the initial and final times range over the values 0 ¢ tl < t2 < T.




For each trajectory we proceed with the analysis described above, and generate
e family of symmetric kernels which are functions not only of (t, 7)

but also of (tl,tz,ils,EZS), that is, R = R(%t, T, tl’tz”-‘ls”-‘zs)' It

the corresponding radii of curvature pi(tl,tz,ils,ias) #£0 for i = 1,...r7,

it can be shown that the family of extremal trajectories is a field of

extremals in the classical sense. It=erclmmm=inthorappendizsthot
- discussed in the append i x
Such a field can be constructed for the example problem/lif and only if the

arc length is less than =x.

W Lo 75 ad 6 Lo
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6. Optimal Control in the Presence of Random Disturbances

In the preceeding discussion of optimal control it wes assumed that
the accelerations acting on the spacecraft are always known, while in
fact this is usually not the case. Suppose, Ior example, that the equation

of motion (1) takes the form

o

= X = f(;c: u, t) + é(t) (35)

where é(t) is a random vector function of time. Typical causes of such
random forcing functions would be unknown solar winds, and/or non-standard
performance of the spacecraft propulsion system. To deal with this case
we must seek a meaningful way to define an optimal control in the presence
of random disturbances.

Let us assume that the statistical description of g(t) is known,
for example, suppose that g(t) = B(t) &, where the 0, are zero mean
Gaussian random variables with known variances and cgrrelations. The
sample space associated with q is teken to be the ensemble composed
of an infinite number of space missions with the same standard trajectory
and mission objectives, but with values of ai randomly selected from
the given multivariate Gaussian distribution. Any space mission would
noﬁ actually be repeated many times, of course, but this ensemble makes

sense if we imagine a large number of numerical simulations of the mission




on a digital computer, with Monte Carlo selection of the Q- The guidance

system performance index will be taken as the expected value (statistical

expectation) of the quantity to be minimized in the deterministic case,

evaluated by the computer simulation or some equivalent method. This

approach is intuitively satisfying, foy if the system performs adequately

for a large percentage of the cases numerically simulated, it is

reasonable to say that it has been properly designed for a single mission.
Let us examine the task of constructing the optimal control function

by considering & simple problem in the ordinary calculus. Suppose we

are to minimize (in some sense) the single function B(u, &), where

u is the control variable and ¢ is a zero-mean Gaussian random variable

with variance 02. We expand in Taylor's series about the point

(u = u, @ = 0) to obtain

SR= plM ) ~R(4s,0)
(_é)s/u 3 (28 X +/—f§-/5,ao<

I \old\/ a:’//t
Lo (228 o p hihen andan (36)
e s B A

where the partial derivatives are evaluated at (u = ug @ = 0). wWe

3B
find the expected value of it =Z7I7) to be
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where p(a) is the (Gaussian) probability density function for ¢, and

E[ ...] indicates the statistical expectation of the quantity in brackets.

To obtain equation (37

E[éaz] = 02, and

) we have used E[sa] = E[605] = euee = E[6a2n+l] = 0,

E[6ah] = 3g , which are properties of the Gaussian distribution.

Just as in the deterministic case, we seek to minimize the expected value

of 6B by searching for

equation (37). Thus,

a uS which sets the coefficient of &u equal to zero

BE)Ba)e)s o]0 e

of

vhere all the (2n + 1)st derivatives B(u, a) contribute to the "first variation”

with respect to u, that

appear in equation (38).

~ P+ |
is, terms of the form A s

, .
du o’ E[d ]
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To obtain an approximation to equation (38) we might only insist
that L:iil?( ( AL ) Oﬂ'—' O, héping that the higher derivative terms are
negligble (an assumption which is not always Justified). Because of the
difficulty of dealing with all the variations with respect to all of the
random elements of a system of the form (35), this simplified approach
is often employed when constructing the optimal control in the »resence
of random disturbances. Thus we replace the random function g(t) in
equation (35) with its (time varying) expected value E[g(t)], and proceed
as in the deterministic case. For those situations where this simplication
is not justified it often becomes quite difficult to find a solution by
classical methods, and the dynamic programming technique becomes an
attractive analytical tool (refereﬁce g , chapter /0). An example of
a solution to such a problem based upon the dynamic programming point of

view is given in reference & //,

7. Sequential Estimation of the State Vector

In order to obtain the initial conditions for the optimal control
equations we come to the navigation probleﬁ, where the state vector describing
tne trajectory must be estimated from noise contaminated tracking data;

To simplify the discussion we shall assume that the accelerations acting
six

upon the spacecraft are known, so that the A dimensional state vector

i(ti) composed of the position and velocity components at any time ti




is sufficient to determine the trajectory for all future time t 2'ti.
Assume that we are given a sequence of g dimensional data vectors

> @(tl), P(ty) +oe o(ty) ..;E related to the time varying state vector,
but which are contaminated with additive noise (measurement error).
Comparing the given é(ti) with the values that would be observed if the

trajectory were standard and the data nolse were zero, we have, to first

order
g Tae 2T 55y + 2 ) & A ST n
é“.\/‘t\) Iil// &-:\jA) 9‘/)’ / A‘/]ﬂ/ \//’/‘/ gt / (39)

and A is the partial derivative matrix given in equation (39).

where n(t ) isa g dimen31onal noise vectork (We shall henceforth use
subsecripts to denote times ti) Again we consider the ensemble of all
varied trajectories defined by the Monte Carlo computer simulation discussed
in part 6, and we assume that over this ensemble we know the statistical
description of the random variables 6ii and ﬁi. Suppose that at some

time t, we have a minimum variance estimate of the first variation of

i

the state vector at ti, denoted by 62: , which is based upon all data up to
’ 12
and including time t;. The minimum variance estimation technique (reference )

aas the property that the variance of the érror in the estimate is a
minimum when compared to the error variance obtained with any other
linea;,unbiased estimate. We define the error in the estimate to be

- -
= | 86X - 0x. and the error covariance matrix to be
i i’

AY = E[ei 4 '] (40)




Seeking a sequential (iterative) technique for treating the data, we

4
advance the estimate and covariance matrix from ti to ti+l according to
A - "
%541 = Uraey, 1) &%y (+1)
AN * 1
Miga ‘[U(i+1, i)] (a,] {U (i+1, i)] (+2)

where the (/) denotes the advanced quantity. We update the advanced

estimate by incorporating the new data point at t,

i+1 according to

— % _ — A A
S i1 = \/\éﬁ [S Sb,{-r/ B /441/ SMisr | T S vy (33)

where

//'L.‘f" /\+I A+l [ /~+l 47‘/ A'f/] (ll-)-i-)

T\ E[ /:f/ ,,/,, ] | | (45)

»

The updated covariance matrix becomes

,«+/ [I Wes Agf,j_//]_\&.ﬂ (6)

T see Part 3 for definition of Usar, 5) = Utia, )
2




In the same fashion we proceed to cobservation times % t

i+2? “i437 "

and sequentially treat the data vector at each time in the manner described
above. The process is started at the initial observation time tl by

2

taki
aking xl
estimation problem was developed by Kalman in his analysis of linear

13
dynamic systems excited by uncorrelated error sources (reference 13).

=0 and.f\\l = the a-priori uncertainty. This approach to the

As 2 simple illustration of the method let us consider the problem

of estimating the unknown constant 8x when given the observations

s9(t,) = 6x + n(t,) (¥7)

where E[éxzj =g ?, E(n (t )1 =0, 2 and E[ 6062, ]=0foris#j. Thus

equations (41) - (46) become

o
*
(8, 0% = (5, )° (49)

SN, = ( )ﬂv) (V\f} [5737»/—5”] 4(50)

(@)= (@) - @) o)+ @]
= (@ (@ (o) ()] o
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/
where the initial values are 6x1 = 0 and (él)z = (cx)z. Note that equation

(50) can also be written as

A )

- ) =1 _
S = (@ (@ 60T )] ()
and equation (51) can also be written as

2= (o8 + ()] (53)

(";1)

Equation (52) is the well-known formule for combining two uncorrelated
estimates with different variances, and equation (53) is the well-known

formula for the resultinz variance of the combined estimate.




Continuous Estimation of the State Vector

As the time intervals (ti-r_-l - ti) become small it is reasonable
to ask if a continuous form of the estimation equations can be obtained,
that is, we seek to replace the difference equations for the estimate
and covariance matrix with differential equations. An analysis of the
continuous case by Kalman (Referenceiz’g) is based upon the assumed
existence of a differential equation describing the state vector to be
estimated, where there is a continuous, "white noise" random forcing
function. 1In the classical analysis of continuous Markoff processes

apnalogous to (reference 1%
this would befthe Langevin equation. N We shall take a different approa.ch

where %gk general
stochastic process, A. observationsA en at discrete times, and type of

here, considering the seauential estimation equations appropriate to e{the most
extend the result to the continuous case without constructing a dynamic
model of the process (reference &3).
Let us imagine a stochastic process wﬁich is composed of an
infinite number of time records of the n-dimensional random vector ¥y (1),
that is, we have the ensemble é/\g, L‘I«/) forao =1, ¥ * * °*®  VWe assume
that the a priori first and second moments of the process are known
to beﬁ[/v éﬁ =0, Ebﬁ,‘)/\/ r,.,)] _/L)L ) = , and E[g/g)/; JA]
/,M> = [ > where the statistical expectations are taken over the
the ensemble 5 /lg, éﬁ}' On some one experiment, corresponding to a

81ngle (unknown) record ¥ (t), we observe a sequence of data vectors

§%) z)-“)S@;) _} at the discrete times ;/ﬁ -,Z;?

S

We assume that the §Q7 are linearly related to y k(’t:), tha.t 1s,

B(r) gl)? B. G5 o

where the Bi are known matrices. In general, we cannot employ a

sequential estimation technique to obtain the minimum variance estimate
y *(t) for this correlated stochastic process, because gkisabirgformation
contained in the data up to and 1nclud1ng time t; cannot/\’be represented

by the n by n covariance matrlx./l. Indeed, it is shown in Reference 2% /2




and
that a necessary, /\ sufficient condition to be satisfied by process

correlation matrices if the sequential estimmtion approach to be

Justified is

P))g; = ?/f’s/:f ??‘g {f:o«wé/ 2 r’/é‘- =g (55)
where . :!/ N
(Colns’) (56)
The Pji is called the “normalized correlation matrix", and,

if equation (55) applies, the process is said to be "sequentially

correlated". Equations (41) - (46) then generalize to

A _ v —* '
Ihatil T @ﬂ,/{/(/;,{/ (55)

A= Ay = (Piasy i ) (s~ N Penr, 1) (56)
e = Wiy (S%or= Biws rinr) /ﬁw (57)
WA-J,, (Airs Boo) ) Biss Ao, &) (6)

A (I = Wini va/)[—Axf/ (59)

To show the correspondence to the application discussed in
Part 7, we let "}: = [54—(‘;) /;-L,;J , that is, we
incorporate the noise vector as part of the state vector. By
defining Bi = [Al I_], where I is the q by q identity matrix, we

have equation (S4). Suppose the noise is exponentially correlated,

that is,

£ [ el 'tts]] = b D (350 ETmt]
where D i1s a constant matrix. Then from the definition of p _ it is 3" =2
easy to show that U;V,, :. o B ‘

o L 2(%4) s

and equations (1) - (46) follow from (55) - (59).

'




A sequentially correlated process has the property that the

minimum variance estipate of a future state depends only upon the

present estimate andigg;griance matrix, but not upon the past history

of the process. Such a process can be thought of as a generalized, or

"wide sense", Markoff process, which is similarly defined but in terms

of the conditional probability of the future state. Thus the

sequential correlation definition treats only the first two moments

of the process, while the Markoff definition implicity deals with all

the moments. If the components of §i are Gaussian variables, so

that the first and second moments completely specify the process, then

the two definitions become equivalent.* This more general approach to the

: estimation

problem seems to hold only academic interest for the discrete case, for, as

pointed out above, whether we postulate a dynamic model or the sequential

correlation condition, we come to the same result when applying the

technique to the trajectory problem. When extending the sequential

estimation technique to the continuous case, however, we come to

different results from the two sets of assumptions. )5

The continuous equations are obtained in Reference () vy
expanding the quantities appearing in equations (55) - (59) in

Taylor's series about an arbitary point ti. Letting ti+ ->-ti, we

1
obtain

%}/’jt‘ W/g*" Q(%} (61)

%Jﬁ’ S"Q‘):(ﬁ)—ﬁ*‘*ES] (62)

where the (time dependent) elements of equations (61) and (62) are

sr () eAG) Gr) e

- e e m wm e = s e

16

* In Reference A7 it is shown that any stationary, Gaussian Markoff process
is sequentially correlated. :
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Vb L2 2 __//ZA:/ZQ-_:/;’ (6k)
Ty #/d B\ NEES -/ (65)
~ A A ! /
Q /:/L (ooz'/ tSB[BSB
- /
- Q3][4F] - o/
_{ uj/-/._/ ;/‘”;/f
The initial conditions for equations (61) and (CK) are
(ez) :
— -/ =
—_— -~ / 4
/?O —‘40 EO IED‘/LO Z‘)/o] g ;ﬂo \67)
¥ _ [ A A ’ | 68
A =T - 4.3, (VJB Bl(r.) ®
Equations (61) and (62) can be numerically integrated to obtain
—%
y (t) ana Ax(t). ’
As an illustration of the continuous estimation. technique, let
us treat the continuous version of the simple problem discussed in
Part 7. Letting SNX =4, 3hd mH)> Y, we Aave
SPr) = A+ M. () (69)
& priori
whereyd' is an unknown constant to be determiqed, withAvariance 3
and Yo (t) is noise, with autocorrelation function given by
[ b; ) g: /],. T epfp[-1(%; ~2:)1 (70)
A =2 1 |
Thus ? *
AL Z\
E //7/ = |1 /j (71)
o
P = ’ A (72)
7t o [ (A2 )J j = (T
P _ (73)



HRY)
This problem is solved in closed form in Reference .0 It is

shown that the differential equation for the estimate is

— - : ; + //_;E}i_ ,;
maeﬁw L%f /% LIJ ( g//L / J
[T\ %

FZ—) = ;Z /'tfﬂ\ + /4;;:?5 -:7
L %) 2 4

can be
Equation (74) A integrated to yield

[sea)) | [52%
’?%/ @JY Llj%/ﬂ[// t L;%;(z]/>

X /0
/?}q ,,!)

SPiH) - /glf’l//’z)
where —
Et@fﬁ) ] {2 M// /4/)
It follows that as ct = *, we have
/0 1 .
mrt) == ()| sep) e
0
/ n -/
X \1 ~ »
Elpran-n)] — 29 fea)!
It is interesting to cbmpare equations (79) and (80) to the

limiting values of the estimate and error variance obtained in the

discrete case discussed in Part 7, where, for large numbers of

measurements (n), we have

SK* -———>(7,7) § X2

] EAN I C f -
A [ i / (A AT
b v T

(74)

(75)

(76)

{17)

(78)

(79)

(80)

(81)

(82)
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If we decompose the interval{b)ff}into n increments Z;Z‘?Kég}, and
represent equation (79) by the . sum A
A
] 7.
[ /[/ W”/ﬂ] —‘/Z 34 ,‘ZWA (83)
A=y A‘/
Equation (80) becomes
o) [)/2 T (34)
e N { \
/C/ﬁ/ /\/Qd/'f;

Thus the discrete and continuous cases have the same limits if we

interpret the equivalent uncorrelated "white noise" variance in the
discrete case to be /Q;?/pgﬁﬁ“)-/. Note that the equivalent white
noise variance goes to 1nf1n1t§/as At goes to zero, which is to be

expected,
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Conclusion

We have presented here a theoretical discussion of the guidance
and navigation problem, treated from the point of view of cptimal
control and estimation theory. The approach has been somewhat simplified
and heuristic, based upon analytical results recently obtained (references
5, T, 1z and 15). A more rigorous and complete discussion of some of

the ideas ihtroduced here will be published in the near future.




Appendix: Optimal Control on the

Unit Sphere

(ntroducdd
In this appendix the analysis of the example problem ¢ lzz=zzl in

Part 2 will be developed )following the discussions in Parts 3 and %.

77 .
The equations of lotion are given by

2 2 \&
_ (u° + cos x,) jl} - 3E W) (A

u

wnhere u(t) is the control function. Assuming us(t) = 0, the standard

trajectory is given by x25(t) = 0, and:

p- / /’ —
f~cosx, ,sinx, )
0 {\/._’__.2_’?__22 [0 o]
d 2 I
u, + Cos‘x

0 0 | 0 0
T\t u

= B = [0, 1] (A.3)

3 :
2
du | “u A+coszx2,6’,

_a__rz) - 11, o] (a)




2 2 -
[d fl) d fl
2
\
axl axlax‘2 0
J (t) = ‘ =
' 3% 3%r 0
1 ) ( 1
33X, 0X 2
A 1772 axz J
Jz(t) =0
M(t) =0

It follows from equation (A.2) that .

the identity for t = 7
U(t, T) =
O for t <«

Given B, = 5; i(tz) for 1 =0, 1, ... r, we have

K () = &) U(t, 1) = (ay, ay,)
My(6) = % (8) 6(e) =ap;
gi(t) =@ H(t) =ay,

(A.5)

(A.6)

(A.7)

(4.8)

(A.9)

(A.10)

(A.11)



Thus we have

t

, 2
6Bi(T) = aliéxl(gg + aZiéxzﬁi) + 8y, JF su(t) dt
Y
a. .\ tz tZ
+ 23 5u2(t) dt + f K*(t, T)su(t) su(r) dtdr
! 5%
+ higher order terms 1 = 0, 1, «e. T (A.12)

where (t -7T) for t = 7

K*(t, 1) = (A.13)
(T-T)fOI‘T>t

Following the discussion of Part 4, we seek to minimize B, = xl(ta),
subject to B, = x(t,) =0. Thusa ' = (1, 0), &, = (0, 1), and equations
2 ISl 2' 2 o} 1 _
(29) and (=) are obtained. It follows that the Lagrange multiplier is
v = 0, and that us(t) = 0 is the standard control. We find the eigenfunctions

and eigenvalues of X (t, t) by twice differentiating the equation

t : _
2
w9, (t) =f K*(t, 1) cpi('r)’d:r (A.1%)
Y
Thus

2
_ 2|21 -1 .
w = -3 [m)} i=1, eee @ (A.15)




— (.}—_')"’

qpi(t) = (12; = \)Z cos(—wi)%(t-tl) (A.16)

It can be shown that the { o i(‘c)? do indeed form a complete

-/ i=l, s e®

”

set over the inter{zal (tl, tz). Theradius of curvature p is given by?

p = (t; - %)) il - (%) ;1[2;-1]-2 [lJ’“’i]-l}

= tan(t2 - tl) (A.1T7)

N\

The eigenvalues @, of the kernel R(t, 7) are solutions of the equation
1 2

(1 - Ei)% tan(l - Zu'i)% (t2 - tl) = tan(tz -t (A.18)

1)

Thus we conclude that all Ei > 0 if and only if (t2 - tl) < X

#See 'E‘itchmarsh, "The Theory of Functions,"” to evaluate the series of
(A.1T7).
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